WASTE BATTERIES AND SMALL WEEE FIRE CHALLENGES IN ITALY

Luca Campadello | Strategic Development & Innovation Manager | Erion Compliance Organisation

18 February 2025

Erion

Waste Batteries and small WEEE fire challenges in Italy

GRINNER event

Agenda

- Risks for PROs associated with fire incidents
- Treatment operator challenges (WB and WEEE)
- Framework for a comparative analysis of fire risk management

Fire risk exposure is becoming critical for WB and WEEE operators. Not only big events but also for micro events

continuity of operations – safety of workers – image of the industry

BIG EVENTS:

- Operation stop
- Transferring flows between operators
- Start of operations again
- Difficulties in understanding if the prevention practices are effective or not

🔇 erion

MINOR DAILY EVENTS:

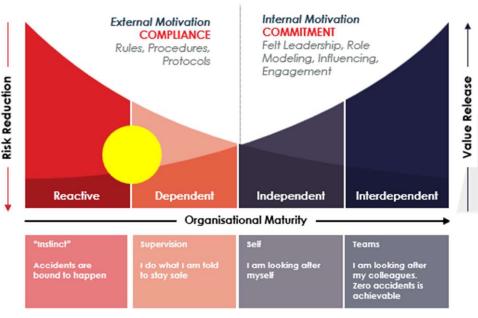
- Micro-stop of operations
- Part of usual operations practices
- Difficulties in tracing micro-events and understanding if the procedures in place are effective or not

Developing a framework for understanding the dimensions of the fire risk mitigation

Erion	Erion
Energy	Weee

- Partner: DSS+
- Development of the framework
- Involvement of the Erion operations team and the innovation team
- Validation through 5 site visits

Framework for assessing Fire Risk management practices



Waste treatment sector is facing changes in the waste streams and operational conditions

- The waste treatment/recycling sector has been historically perceived as a medium-low hazard sector.
- In the last decade, the risk profile has been changing as a result, for example, of exponential growth of Li-ion batteries in WEEE. Risk of fire is material for these types of operations, with most sites having experienced multiple fires in recent years.
- The fire events and the losses incurred in recent years and increase of insurance premium (up to 6x in some cases) by the various treatment facilities have triggered the need to reduce risk exposure through a range of technical, organizational and administrative measures.
- It is clear to the sites that ISO certifications (early-stage ISO 9001, 14001, 45001, etc.), and other waste permit prescriptions are not sufficient to reduce the risk exposure, but just foundational compliance elements.
- Prevailing safety culture maturity and risk management practices still show symptoms of early-stage maturity (reactive/dependent on the Bradley Curve) compared to other sectors

dss* Bradley Curve

Fire risk is inherent to each treatment step

Collection >	Transportation >	Storage 📎	Dismantling >	Recycling
Drop-off of defective batteries that may become unstable and trigger a thermal event	Thermal safety is affected by differential pressure/temperature in some transportation conditions	Unsuitable packaging material	Dismantling of defective batteries Improper stabilization may lead to thermal runaway	Batteries in devices arrive in bulk containers despite pre- sorting - damaged during discharge or relocation
Incorrectly discarded batteries Unprotected LIB inside receptacles	Collision or impaling	Unsuitable storage location	Damage of batteries during dismantling	Damaged batteries in devices stored in large piles
Sorting failure → batteries in devices damaged in bulk containers	Physical damage due to improper storage that may lead to electrolyte leaking, short circuit, structure crack	Short circuits in stored batteries leading to thermal runaway	Sorting and dismantling failure → batteries in devices damaged in bulk containers	Dismantling failure → batteries enter mechanical process
Adequate packaging material Limit quantities of batteries Use of compliant containers	Sealing & isolation conditions Taping the battery terminals	Advanced detection measures Outdoor storage	Discharge of batteries Segregate battery holding areas	Chemical fire suppression system Enhanced water-based suppression
	Potential Fire Risk Level (hig	her risk with darker colour)	Example of risk control measure	

dss* Protect, Transform, Sustain,

Common Fire Risk Factors

Control Measure

erion

© DSS

114

Multi-site LiB Fire Risk Comparison – Key Dimensions (1/3)

We have developed a framework for comparative analysis of Fire Risk across multiple sites built on 3 key dimensions

Performance	This dimension captures the recent past performance in terms of fire events occurred . For this specific sector that is still experiencing <u>fairly frequent</u> fires, recent performance can be seen as a proxy for near future performance (until additional controls or strengthening of existing controls have taken place)
Risk & Control	This dimension captures the degree of opportunities that exist to further reduce risk of LIB fires across different site areas, through new controls and/or strengthening of existing controls , also considering practices adopted across the sector.
Management System & Culture	This dimension capture the prevailing maturity of key management system elements , including organizational culture and capabilities, as underpinning any risk reduction journey. Moreover, some specific elements (e.g. emergency response, procedures, etc.) are also directly correlated to the adequacy/effectiveness of some of the control measures adopted to prevent/mitigate risk as mentioned in the Risk & Control dimension.

dss⁺ Protect. Transform, Sustain.

© DSS

Multi-site LiB Fire Risk Comparison – Key Dimensions (2/3)

Level I:	Level 2:		
Dimension	Element		
Performance	Last 4 years fire incidents		
Risk & Control	Incoming WEEE Waste & Unloading	Level 3:	
	Main incoming WEEE Storage	Specific Item (e.g. Control Measures	
	Pre-Treatment Area - Operational Storage	Specific operating procedure for control of violume/inventory of UB present in Treatment	
	Pre-Treatment Area - M anual Dismantling	Area/Hall. There should not be more material stored in the treatment hall than can be processed by the end of the shift.	
	Pre-Treatment Area - Conveyour Belt & Shredding	Any excess material must be stored in dedicated and sate storage areas such as bunkers,	
	Storage of Pre-Treated M aterial	Video comera installed in local storage area for continous video survellance. Video survellance should be monifored onsite by personnel able to respond to a hazard.	
	Storage of Fractions	Thermal (intrared) camera installed in the local starage area. Detection set point should be set	
	Storage of Batteries	as law as possible, but sufficiently above equipment operating temperatures to avaid take alerts. Material must also stay in field at view at camera for sufficient duration to be detected.	
Management	Risk Assessment & Risk Awareness	Smake detection installed in local storage area. Smake detection can be an early indicator of a hat crabus condition. 2024 IBC calls by reference NFPA 72.	
System &	Rules & Procedures	Continuous presence of operators (with oblequate PPE) at the stack pile, with prompt in tervention in case of anomalies detected ipresence guaranteed diso during staps/breais to	
Culture	Emergency Preparedness & Response	avoid the area being unattended) Separation wall/barter (the proof) between WEEE stockpile and treatment line to minimize	
	Incident Management	potential for spreading of the tram stockpile to treatment line (with adequate height compared to height at stockpile)	
	Management of Chance & Pre-Start Up Safety Re	Smoke/tume evoluation/extraction system above the stackpile area to reduce generating of taxic/heavy smoke/tumes inside the building and 'taditate emergency response parterial systems', the hoses installed in the vicitity of the internal stackpile. Hydrants are not required	
AssetInte	Asset Integrity (of safety critical elements)	by code inside structures but adequate water flow is required for the system. Partoble from hijection or multiple partoble fire extibutien types. This must include	
	Governance & Performance M anagement	oppropriate training or labeling for different the scanados. Specific mobile equipment (e.g. scrap-handler with sufficient range and long enough extension	
	Insurance	arm) that can be used to remove burning waste tram the stociptie Surveillance during non operating hours (e.g. weekend, after working shifts), with partable	
	Training & Capabilities	thermal camera, pre-defined surveillance plan and focus an higher risk areas - note: befter it routine surveillance is carried out by site personnel with adequate training and ability to carry	
	Leadership Commitment	out prompt intervention in case of anomaly/early fire detection, for speed of response	

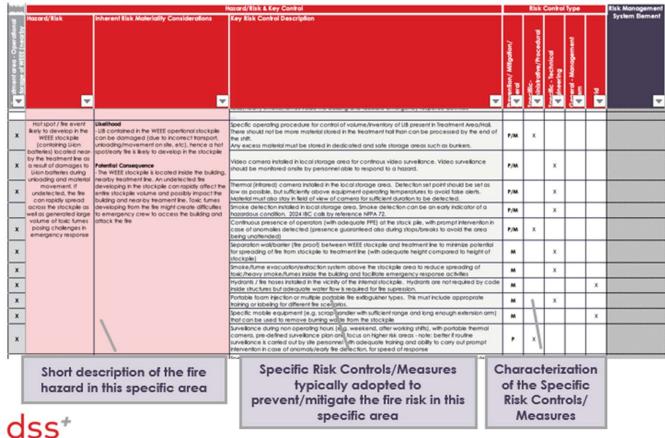
How the framework works

- The Framework is structured with 3 levels of increasing granularity:
 - o Level 1: Dimension
 - o Level 2: Element
 - Level 3: Specific Item (to date 132 control measures mapped)

The Risk & Control and Management System & Culture dimensions consist of multiple elements that are being evaluated

- The **Risk & Control dimension is** structured around 8 elements. These relate to the typical areas of WEEE recycling/treatment where LiB related Fire Risk can occur (identified based on the 4 pilot sites visited). For each of these 8 elements, a set of typical control measures are reviewed in more detail and evaluated
- Similarly, the Management System & Culture dimension consist of 10 elements which represent the prevailing management system and cultural aspects underpinning a robust safety/risk management program. For each of this element, specific items have been defined.

dss⁺ & erıon


Loval 1.

Loval 2.

© DSS

Multi-site LiB Fire Risk Comparison – Key Dimensions (3/3)

Dimension: Risk & Control → Element (Area): Pre-Treatment Area - Operational Storage

Protect. Transform. Sustai


© DSS

Conclusions

It was possible to develop a framework for the assessment of the fire risk management by:

- developing objective criteria
- developing methodologies to evaluate the gap and the effectiveness of the measures
- developing internal competences (innovation team, operations team)

Luca Campadello Strategic Development & Innovation Manager Iuca.campadello@erion.it

